
Brie: A Specialized Trie for Concurrent Datalog
Herbert Jordan

University of Innsbruck

Austria

herbert.jordan@uibk.ac.at

Pavle Subotić

University College London

UK

pavle.subotic.15@ucl.ac.uk

David Zhao

University of Sydney

Australia

dzha3983@uni.sydney.edu.au

Bernhard Scholz

University of Sydney

Australia

bernhard.scholz@sydney.edu.au

Abstract
Modern Datalog engines are employed in industrial applica-

tions such as graph databases, networks, and static program

analysis. To cope with the vast amount of data in these ap-

plications, Datalog engines must employ specialized parallel

data structures. In this paper, we introduce a specialized data

structure for high-density relations storing large data vol-

umes. The brie data structure effectively compresses dense

data in a lock-free fashion. It obtains up to 15× higher perfor-

mance in parallel insertion benchmarks compared to state-

of-the-art alternatives. Furthermore, when integrated into

a Datalog engine running an industrial points-to analysis,

runtime improves by a factor of 4× with a compression ratio

of up to 3.6×.

Keywords Datalog, Data Structures, Concurrency

1 Introduction
Modern Datalog engines are being increasingly employed for

large-scale data processing tasks, including graph databases

querying [31], network verification [14] and program analy-

sis [18] among many others. Due to the often giga-scale sized
data computations inherent in these applications, a scalable,

high-performance implementation of a Datalog engine is

paramount.

A vital ingredient for achieving high-performance in Dat-

alog engines is a parallel evaluation, i.e., the ability to com-

pute logical evaluation operations concurrently in separate

threads. Designing an effective parallel evaluation strategy,

however, is not limited to the evaluation algorithm alone.

The choice of underlying parallel data structure for modeling

relations is crucial for achieving high performance [19, 33].

While previous techniques have argued for various data

structures, based on best average case performance [19, 35],

in practice, achieving peak performance requires the use of

specialized, highly tuned data structures that exploit partic-

ular characteristics for a given workload.

Conference’17, July 2017, Washington, DC, USA
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

To incorporate a wide variety of specialized data struc-

tures for different workloads, we have implemented a data

structure interface for relations in Soufflé [18]. Instead of

relying on a single relational data structure, Soufflé can uti-

lize a wide-range of data structures and can choose a data

structure for a relation that is most suitable for achieving

peak performance.

In this paper, we introduce a specialized concurrent data

structure for Soufflé called the brie, which has been designed

for high-density relations with a large data volume. Logical
relations with these characteristics show up in applications

such as points-to program analysis. The new data structure

adopts design ideas from both B-tree [15] and trie data struc-

tures [26, 27]. The brie has several key advantages over both

B-trees and tries. Compared to B-trees, the brie achieves a

much higher coding density per element, by taking advantage

of the similarities of maintained keys and thus reducing the

amount of duplicated data stored. For example, in our indus-

trial use case, the brie uses on average 2× less space than a

highly optimized B-tree. Bries do also not require complex

locking mechanisms, because they do not re-organise the

tree data structure for balancing data. Unlike the trie, the brie

has a high degree of cache friendliness. However, note that

bries only perform well for particular workloads exhibiting

relations with high-density data.

We have implemented the brie data structure in Soufflé

to store relations. We evaluated brie’s performance on par-

allel micro-benchmarks and an industrial program analysis

benchmark, i.e., a points-to analysis for OpenJDK. On micro

benchmarks, the brie is up to 15× faster than state-of-the-art

data structures. When used in Soufflé for a points-to analysis,

the brie is 4× faster than B-trees.

The contributions of this paper are summarised as follows:

• We outline the Soufflé parallel evaluation strategy –

an implementation agnostic data structure framework

that allows seamless integration of a specialized data

structures.

• We describe the brie data structure, which is a concur-

rent lock-free data structure for storing relations, and

its integration into Soufflé.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz

• We evaluate the brie compared to other state-of-the-

art data structures on both micro-benchmarks and an

industrial sourced benchmark.

The remainder of the paper is organized as follows: In

Section 2 we describe the parallel evaluation strategy of

Soufflé and the Soufflé data structure framework. In Section 3

we introduce the brie data structure. In Section 4 we evaluate

the brie data structure. In Section 5 we present related work

where we compare the brie to existing state-of-the-art data

structures, and we conclude in Section 6.

2 Parallel Datalog Evaluation
In this section, we describe the parallel execution strategy

and the data structure framework of Soufflé. Soufflé synthe-

sizes a parallel C++ program from a Datalog program [18].

A Datalog program consists of a set of facts, called input
relations (given as data or in code) and logical rules that com-

pute additional derived relations, called output relations. The
set of rules form a specification, where each rule is defined

as a Horn clause. For example, let parent be a binary input

relation. The two logical rules

sg(X ,Y) :- parent(P ,X), parent(P ,Y). (1)

sg(X ,Y) :- sg(P1, P2), parent(P1,X), parent(P2,Y). (2)

implicitly define the content of the output relation sg com-

puting the set of nodes at the same level in a tree defined

by the parent relation. The first rule computes all pairs shar-

ing a common parent, and the result is stored in relation

sg. The second rule is a recursive rule that computes pairs

inductively, i.e., if P1 is the parent of X , and P2 is the parent

of Y , where P1 and P2 are in the same level, then X and Y
are also in the same level and shall be added to sg. While

this is a simple example, real world use cases may comprise

hundreds of relations, connected through hundreds of (po-

tentially mutually recursive) rules.

For the given example, Soufflé [18] produces OpenMP C++

code similar to the simplified C++ code shown in Figure 1.

This outlines the iterative semi-naïve [2] evaluation of a

Datalog program, computing a least fixed point. STL data

structures are used to store relations. The evaluation pro-

ceeds in two stages, the first from line 5 to line 15 evaluates

rule 1, and the second from line 17 to line 36 evaluates rule 2.

In the first stage, we iterate over the parent relation (line 7).
For each tuple t1 ≡ (P ,X) in the parent relation, we iterate
over the subset of parentmatching the first element (lines 8 to

10), finding tuples (P ,Y). Assuming that parent is ordered, we
can efficiently find this subset of tuples via a range traversal

between an upper and lower bound in log-linear time. Finally,

we take the second element of each tuple, create t2 ≡ (X ,Y),
and insert it into the sg relation (line 12).

In the second stage, the rule to be processed is recursive.

According to the semi-naïve algorithm, auxiliary relations

1 us ing Tuple = array < s i z e _ t , 2 > ;

2 us ing R e l a t i o n = se t <Tuple > ;

3 R e l a t i o n e v a l u a t e (c on s t R e l a t i o n &pa r en t) {

4 R e l a t i o n sg ;

5 / / s g (X , Y) :− p a r e n t (P , X) , p a r e n t (P , Y) .
6 f o r (c on s t au to &t 1 : p a r en t) {

7 auto l = pa r en t . lower_bound ({ t 1 [0] , 0 }) ;

8 auto u = pa r en t . upper_bound ({ t 1 [0] + 1 , 0 }) ;

9 f o r (au to i t = l ; i t != u ; ++ i t) {

10 Tuple t 2 ({ t 1 [1] , (∗ i t) [1] }) ;

11 sg . i n s e r t (t 2) ;

12 }

13 }

14

15 / / s g (X , Y) :− sg (P1 , P2) , p a r e n t (P1 , X) , p a r e n t (P2 , Y) .
16 R e l a t i o n d e l t a S g = sg ;

17 whi l e (! d e l t a S g . empty ()) {

18 R e l a t i o n newSg ;

19 f o r (c on s t au to &t 1 : d e l t a S g) {

20 auto l 1 = pa r en t . lower_bound ({ t 1 [0] , 0 }) ;

21 auto u1 = pa r en t . upper_bound ({ t 1 [0] + 1 , 0 }) ;

22 f o r (au to i t 1 = l 1 ; i t 1 != u1 ; ++ i t 1) {

23 auto l 2 = pa r en t . lower_bound ({ t 1 [1] , 0 }) ;

24 auto u2 = pa r en t . upper_bound ({ t 1 [1] + 1 , 0 }) ;

25 f o r (au to i t 2 = l 2 ; i t 2 != u2 ; ++ i t 2) {

26 Tuple t 2 ({ (∗ i t 1) [1] , (∗ i t 2) [1] }) ;

27 i f (sg . f i n d (t 2) == sg . end ())

28 newSg . i n s e r t (t 2) ;

29 } / / end o f f o r i t 2
30 } / / end o f f o r i t 1
31 } / / end o f f o r d e l t a S g
32 sg . i n s e r t (newSg . beg in () , newSg . end ()) ;

33 d e l t a S g . swap (newSg) ;

34 } / / end o f wh i l e
35 r e t u r n sg ;

36 }

Figure 1. Synthesised sequential C++ code for Same Gener-

ation Example using STL sets

deltaSg and newSg are created, to store the new tuples gen-

erated in the previous iteration and current iteration respec-

tively. We first iterate over deltaSg (line 21), finding tuples

t1 ≡ (P1, P2). Then, we iterate over parent twice (lines 22
to 24, and lines 25 to 27), to find tuples (P1,X) and (P2,Y)
matching t1. Finally, the tuple t2 ≡ (X ,Y) is inserted into

newSg (line 30).
With the exception of the insertion operation on line 30,

all operations within the nested for loop are read-only oper-

ations or targeting non-shared memory locations. Thus, if a

data structure provides an efficiently synchronized insertion

operation, the parallel potential of Datalog query processing

could be harnessed by merely parallelizing the for loop on

line 7 and 21.

Since Datalog evaluation operates on sets of tuples, it is

important to choose a suitable set data structure. A candidate

data structure must implement the following operations:

• insert(t) inserts a fixed sized n-ary integer tuple t into
a set of n-ary tuples concurrently, ignoring duplicates.

2

Short Title Conference’17, July 2017, Washington, DC, USA

3 7 4 8
2

2 8 4 24 51 9 0

Figure 2. Overview on the structure of a brie.

• begin() and end() provides iterators to traverse the set
concurrently.

• lower_bound(a) and upper_bound(a) provides iterators
to lower and upper bound values of a stored in the set,

according to a set instance specific order.

• find(t) obtains an iterator to the tuple t in the set, if

present.

• empty() determines whether the set is empty.

However, there is no universal best data structure to store

relations, and therefore we provide a framework for incor-

porating portfolios of data structures. Any data structure

using this framework should implement the interface defined

above. Generally, elements in the set should also be sorted

to allow efficient range queries to be performed when tuples

require filtering, however, this is not mandatory.

It is important to note that in a concurrent setting, semi-

naïve evaluation will either have (1) multiple writers to a re-

lation, but no reads, or (2) multiple reads from a relation, but

no writes. For example, in Figure 1, the nested loops in lines

21 to 33 read from relations deltaSg and parent, and write to

relation newSg. Therefore, no relation is read from and writ-

ten to at the same time, and as a result, read operations do

not need to be synchronized. However, the synchronization

of writes is critical. Concurrent write throughput of the data

structure will significantly impact performance, since vast

amounts of tuples may be produced in the nested loops.

3 A Specialized Trie for Datalog
In order to improve the performance of Soufflé for dense

workloads, we have designed a data structure combining

lock-free, efficient inserts and cache friendly range queries.

We refer to this data structure as a brie – for being structurally
based on a trie and utilizing a node-blocking scheme like the

one found internally in B-trees.

Figure 2 illustrates the overall structure of a brie. The

foundation is provided by a fixed-height trie. Thus, stored

tuples are encoded within the edges, instead of placing them

into nodes as is the case for B-trees or classic binary search

trees. Each inner node maintains a map linking integers (the

components of the tuples to be stored) to child node pointers.

This map is based on the principles of quadtrees combined

with the node blocking feature of B-trees. Furthermore, on

the leaf node level, bit-masks are utilized for compressing

level
i-1..

00 01 10 11

.. ..

00 01 10 11

00 01 10

11
prefix: 001001

00 01 10 11

....

node
level i

level
i+1

br
ie

 n
od

e

..

Figure 3. Internal structure of an inner node of a brie.

level 1..

node
level 0

011..101 111..001

00 01 10 11

010..110 100..010

00
01 10 11

00
01 10

11
prefix: 001001

0..0 0………....0 0...0 0..00..0

br
ie

 le
af

Figure 4. Internal structure of a leaf node of a brie.

the information of the presence or absence of values into

single bits.

Each inner node has to maintain a mapping between inte-

gers and child node pointers. Figure 3 illustrates the structure

utilized for this purpose. Within every inner node of the brie,

a blocked quadtree realizing a map of integers to sub-brie-

tree pointers is maintained. The map’s keys are stored along

the path from a root node to its leaf nodes, where the as-

sociated child node pointers are stored. However, multiple

levels of the inner quadtree are collapsed into single nodes

for improved cache efficiency. While Figure 3 illustrates the

collapse of two levels for clarity, the actual implementation

collapses a configurable number of levels into a single node.

For the experiments covered in this paper, an empirically

determined optimal value of 6 levels has been selected.

Branches that do not contain any child node pointers

are pruned. Furthermore, the root is formed by the first

node exhibiting more than a single child. Thus, a chain of

nodes representing a common prefix of all keys at the top of

the quadtree is avoided. Instead, the common prefix and its

length is stored in an extra variable. During insert operations,

this prefix is shortened as necessary.

Figure 4 outlines the structure of leaf level nodes in the

brie structure. While conceptually identical to inner nodes,

the child-node pointers are replaced by machine word sized

bitmaps indicating the presence or absence of entries. Thus,

effectively the last log
2
(W) levels of the index structure are

collapsed into a single machine word.

The brie structure provides efficient operations for inser-

tions, membership tests, and range queries for processing

3

Conference’17, July 2017, Washington, DC, USA Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz

Algorithm 1 Brie insertion procedure (simplified).

1: // node handling utility
2: procedure ensureExistence<T>(ptr)
3: // handle none-existing root
4: if ptr == nullptr then
5: new← new T()

6: if !CAS(ptr,nullptr,new) then
7: // somebody else was faster
8: delete new
9: end if
10: end if
11: return ptr

12: end procedure
13:

14: // inner-node tree navigation utility
15: procedure getLeaf(root,val)
16: // handle potentially none-existing root
17: ensureExistence<IndexNode>(root)

18:

19: // adapt prefix if necessary
20: ensurePrefixCovered(root,val)

21:

22: // navigate down the internal quadtree
23: info = atomic_load(root->prefixInfo)

24: cur← info.root

25: level← info.level

26: while level >= 0 do
27: next← cur->next[(val » level) & 0x3F]

28: cur← ensureExistence<IndexNode>(next)

29: level← level - 6

30: end while
31: return cur->value

32: end procedure
33:

34: // entry point for insertion of value
35: procedure insert(node,val,level)
36: // handle leaf brie node
37: if level == 0 then
38: mask← getLeaf(node->index,val[0] » 6)

39: atomic_or(mask,1«(val[0] & 0x3F))

40: return
41: end if
42:

43: // navigate through inner brie node
44: next← getLeaf(node->index,val[level])

45:

46: // if next does not exist, create it
47: ensureExistence<BrieNode>(next)

48:

49: // insert recursively
50: insert(next,val,level-1)

51: end procedure

Datalog queries. Furthermore, insert operations can be con-

ducted lock-free utilizing atomic operators for setting indi-

vidual bits in the leaf node level or exchanging pointers in

inner node levels, as outlined by Algorithm 1.

The insert procedure inserts new elements into a brie by

using the getLeaf procedure to navigate within nodes over

nested quadtrees. Non-existing nodes are inserted by the

ensureExistence procedure (line 17) while navigating the brie

Algorithm 2 Brie inner node shared prefix utilities.

1: // a utility to check whether a given prefix is sufficient
2: procedure covers(info,val)
3: i← atomic_load(info)

4: if i.root == nullptr return false

5: mask← (-1) « i.level

6: return val & mask == i.prefix

7: end procedure
8:

9: // a utility to shorten the prefix by 6 bits
10: procedure raiseLevel(info,val)
11: // get current state (atomic)
12: oI← atomic_load(info)

13:

14: // create new prefix info struct (on stack)
15: nI← PrefixInfo()

16: nI.level← oI.level + 6

17: nI.root← new Node()

18: nI.root->next[(oI.prefix » oI.level) & 0x3F]← oI.root

19:

20: // initialize or update prefix
21: if oI.root == nullptr then
22: nI.prefix← val & ((-1) « 6)

23: else
24: nI.prefix← oI.prefix & ((-1) « nI.level)

25: end if
26:

27: // compare and swap prefix index struct (atomic)
28: if !CAS(info,oI,nI) then
29: // somebody else was faster
30: delete nI.root
31: end if
32: end procedure
33:

34: // adapts the shared prefix
35: procedure ensurePrefixCovered(node,val)
36: while !covers(node->prefixInfo,val) do
37: raiseLevel(node->prefixInfo,val)

38: end while
39: end procedure

in a top-down fashion. Furthermore, the ensurePrefixCovered
function is utilized to adapt maintained common prefixes

and grow nested quadtrees in height whenever necessary

(line 20). Details of the latter function are covered in Algo-

rithm 2.

For every new value to be inserted in an inner quadtree,

the shared prefix is iteratively shortened by 6 bits until it also

covers the new value. In every step, a new root node is added

to the local nested quadtree and its height is increased by

one. The tree thus grows bottom up, in a similar fashion to B-

trees. The growing step is realized by the function raiseLevel.
However, items in the brie are never moved around - their

position is kept static.

To synchronize insertion operations, three critical regions

need to be protected: (1) the insertion of a new brie node, (2)

the insertion of a bit in a brie leaf node, and (3) the raising

of a nested quadtree.

4

Short Title Conference’17, July 2017, Washington, DC, USA

The first of those is realized by line 6 of Algorithm 1. In this

step a pointer referencing an empty subtree is replaced by a

pointer to a newly created subtree. The insertion is protected

by a compare-and-swap operation (CAS), ensuring only one

subtree ever to be inserted at a given position into the tree.

In case of a collision, where two threads attempt to insert

two different subtrees into the brie, one thread will succeed

while the other will notice that another subtree has been

inserted. The latter will then discard the temporal subtree

and continue using the already inserted structure.

The second operation requiring synchronization among

threads is the insertion of bits to mark the presence of tu-

ples in leaf nodes of the brie. This operation is covered by

line 39 of Algorithm 1. A simple atomic boolean or operator
is sufficient to ensure correct updates. Conflicting updates

do not have to be detected, since update effects are implicitly

aggregated and no cleanup operations are necessary.

The third critical region is given by the growing of the

btree-node local quadtrees. Its implementation is given by

the function raiseLevel in Algorithm 2. Conceptually, its syn-

chronization follows the CAS approach. However, unlike

the previous cases, the value of the memory location to be

updated is not a simple scalar, but a small struct maintaining

the shared prefix information. This information comprises

the common prefix, its length, and the root node pointer. All

this information is retrieved atomically in line 12, used for

computing a new prefix, prefix length, and root node, and

compare-and-swapped in as a replacement in line 28. As for

the insertion of a brie node, concurrent updates are detected

and temporary values discarded. The support for CAS op-

erations on wider data types comprising multiple fields as

utilized in this example depends on platform specific support.

C11 and C++14 offers according atomic utilities to access

those features, or providing a functionally equivalent substi-

tute.

While for updates (1) and (3) conflicts are expensive, the

probability of such cases occuring is low. Typical work load

patterns will direct threads to insert elements in distinct parts

of a brie, thus avoiding conflicts. Non-conflicting inserts have

very limited overhead over sequential, non-synchronized ver-

sions. In essence, the overhead is given by the utilization of a

small number of atomic CAS operations instead of ordinary

assignments.

3.1 Discussion
Compared to conventional B-trees, bries offer a number of

benefits. In particular, insertion operations are computation-

ally cheaper, since navigation steps do not depend on search

operations over ranges of keys. Instead, in each step the fol-

lowing point can be directly addressed. Additionally, insert

operations do not require insertions into ordered array, ne-

cessitating the movement of lists of keys as it would be the

case for B-trees.

On the memory usage side, the sharing of common prefix

on both, the trie and quadtree structures, as well as the uti-

lization of a single bit to mark the presence of an entry on

the leaf node level contribute to a reduction in the amount of

memory required to store a given set of entries. However, as

demonstrated in the evaluation section, the efficiency of this

compression capability depends heavily on the correlation of

entries to be stored. If common prefixes are sparse, memory

utilization may be significantly higher than is the case with

B-trees or other data structures.

Besides the brie’s more efficient lookup and insertion op-

erations, the brie insertion operation can also be effectively

synchronized for concurrent access, as outlined above. The

presented synchronization scheme is conceptually lock-free

(assuming sufficient atomic operation support) and lineariz-

able. The latter can be shown based on the sequentially con-

sistent order of successful CAS operations.

4 Evaluation
In this section, we evaluate our brie data structure in compar-

ison to other data structures. The outcome of our evaluations

is to validate the following claims.

• Claim-I: Our brie data structure uses less memory

than storing the data directly for high-density data.

• Claim-II: The sequential performance of our brie data

structure outperforms state-of-the-art data structures

for high density data.

• Claim-III: The parallel performance of our brie data

structure outperforms state-of-the-art data structures

for high density data.

• Claim-IV: Bries outperform state-of-the-art B-tree

data structure when being used for maintaining rela-

tion data in Soufflé [18] for an industrial benchmark,

i.e., performing a simple points-to analysis for Open-

JDK with 7 MLOCs.

The brie data structure has been implemented using C++

and integrated as a data structure representing relations in

the Soufflé Datalog compiler [18]. Synchronization opera-

tions in our brie implementation are based on C++’s con-

currency memory model [6] and its atomic value wrappers.

They are thus implemented to be portable among different

architectures.

The performance characteristic of brie is evaluated through

a set of benchmarks, evaluating the execution time of the

most frequently used operators within the Soufflé runtime.

Furthermore, we evaluate the memory requirements of our

structures, since memory constraints are commonly the lim-

iting factor for scaling up analyses.

Besides our brie implementation (denoted as brie), we
include additional reference data structures in our evaluation.

For the evaluation of memory consumption and sequential

performance we include:

5

Conference’17, July 2017, Washington, DC, USA Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 20 40 60 80 100

m
e
m

o
ry

 [
G

B
]

elements in millions

brie 0.1%
brie 0.5%

brie 1%
btree (rand)

brie 2%
brie 5%

brie 10%
brie 100%

Figure 5. B-tree vs. brie with different point densities (10.000
samples each)

• C++’s std::set as an example of a balanced tree based

in-memory data structure (red-black tree) satisfying

all requirements stated for Datalog relations

• C++’s hash based std::unordered_set, for clarity denoted
as std::hash_set, providing theoretically superior inser-

tion performance of O (1), but no efficient support for

range queries

• a state-of-the-art B-tree implementation provided by

Google [1], denoted as google btree
• a sequential version of Soufflé ’s high-performance

concurrent B-tree [19], denoted as sequential btree
For the evaluation of parallel operations we include:

• a parallel version of Soufflé ’s high-performance con-

current B-tree implementation with optimistic lock-

ing [19], denoted as optimistic btree
• the concurrent_unordered_set implementation of In-

tel’s TBB library version 2017_U7 [28] denoted as

tbb::hash_set, representing an industry standard, state-

of-the-art concurrent set implementation; since it is

hash based, no efficient range queries are supported

The experiments presented in this section have been con-

ducted on a 4-socket Intel(R) Xeon(R) CPU E5-4650 system

(8 cores each, 32 total
1
) equipped with 256GB memory using

GCC 5.4.0 with -O3 optimization. GCC’s OpenMP imple-

mentation is used as the underlying runtime system, threads

are pinned to cores, and sockets are filled before threads

are assigned to additional sockets. All sources are publicly

available
2
.

4.1 Memory Requirements
The first aspect to be investigated in order to determine

the suitability of the brie data structure for representing

relations within a Datalog query processor is its memory

consumption. In theory, our data structure exhibits O (N)
memory requirements. However, the memory usage of the

brie depends on the density of those entries.

1
we ignore hyper-threading capabilities in our evaluation for brevity

2
https://tinyurl.com/ycb3gqvc (available on github, anonymised for review)

 0

 2

 4

 6

 8

 10

 12

 14

1 1/250 1/500 1/750 1/1000

m
e
m

o
ry

 [
G

B
]

element density

std::set btree (ord) brie

Figure 6.Memory requirements for 100M points depending

on data point density.

For instance, the data points (10, 11) and (10, 101) will be
represented through different 1 bits in different leaf nodes.

On the contrary, the elements (10, 11) and (10, 12) would be

represented through 1 bits in the same leaf node, consuming

less memory. Since the values of stored entries are used to

address the bit to be set for their representation, the actual

values of the stored data points become relevant for the

overall memory consumption.

Let S ⊆ Nn be a set of n-dimensional points and

B (S) =
{
x̄ ∈ Nn | ∀1≤i≤n .∃¯l ∈ S .∃ū ∈ S .li ≤ xi ≤ ui

}

the set of points contained in the axis aligned bounding box

of S . Then we define the density d (S) of S by

d (S) =
|S |

|B (S) |
∈ (0, . . . , 1]

To evaluate the memory requirements of the brie data struc-

ture, the density of data points needs to be considered.

The memory requirements of bries filled with data of var-

ious densities are illustrated by Figure 5. Results labeled

“brie X%” are obtained by maintaining a data density of X%.

The results show the linear correlation between the number

of contained elements and the total memory consumption.

Furthermore, it can be observed that a higher data point

density leads to a higher efficiency of the brie structure. For

a sufficiently high density the brie provides higher storage

efficiency compared to the B-tree, while for lower densities

B-trees (vastly) outperform bries.

To quantify the impact of the data density on the memory

requirements of a brie, Figure 6 summarizes the total mem-

ory usage of three different data structures to store 100M

2D data points of varying node density. Only the memory

requirements of bries are affected by the density. In total,

to store a set of 2D points (2 × 4 bytes each), C++’s std::set
requires 40 bytes, Google’s B-tree between 8.8 and 10.5 bytes,
Soufflé ’s B-tree 9.4 to 13.3 bytes, and our brie 0.142

d (S) bytes per

point. Therefore, even at 2% density, our brie uses 6.4 bytes

per point, which is smaller than a direct encoding using 8

bytes.

For brevity, we focus on 2D data in this evaluation section.

However, as additional evaluation showed, similar results

6

Short Title Conference’17, July 2017, Washington, DC, USA

are obtained when evaluating the memory consumption or

performance of one- or higher-dimensional point sets.

4.2 Sequential Performance
In the next step we evaluate the execution time required

for the three most performance critical operations: inserts,

membership tests, and range queries.

For evaluating the performance of the insert operation, we

insert varying numbers of elements into initially empty sets

and measure the number of inserts per second. Thereby we

distinguish between an ordered and unordered use case. In

the ordered, the elements are inserted in their lexicograph-

ical order, in the unordered, a random order is employed.

Furthermore, due to the sensitivity of bries towards data

point densities, point sets with varying densities are inserted

into brie structures.

For the membership query benchmark we insert the same

sets of elements into our candidate data structures, followed

by querying for each element once in a random sequence.

The number of queries processed per second is recorded.

Finally, for the evaluation of the range query operation

we focus on the cost of scanning (or iterating) through a

range of elements, since the cost of locating the start of a

range is already covered by the membership test. Thus, for

this benchmark we are measuring the number of elements

traversable in each second.

Figure 7 summarizes the measured performance for all

three operators. As in the previous experimental setup, “brie

X%” denotes the utilization of the brie structure with a point

set exhibiting a density of X%. Each evaluation has been

repeated at least three times, generally yielding neglectable

variations in processing time, and thus throughput. Thus,

variance indicators have been omitted for clarity.

The results show the nearly linear scaling of ordered in-

serts on the investigated B-trees and brie configurations

(Figure 7a), compared to a gradual performance degradation

observed for growing set sizes for random ordered inserts

(Figure 7b). This is due to the higher probability of cache

misses when inserting elements into data structures exceed-

ingly outgrowing available cache sizes. A similar effect is

observed in the random query case, while the scans are not

effected — due to their in-order memory operations.

Given sufficiently high density, the results demonstrate

the speedup gained by the brie structure over the B-tree –

between 5-17x faster for insert and query operations. In those

cases, bries even outperform hash based set implementations

exhibiting theoretically superior runtime complexity. For

range scans, however, the need of decoding the bit-encoded

values in the brie increases the scan time by roughly a factor

of two, compared to Soufflé ’s B-tree, bringing the brie on

par with Google’s B-tree.

4.3 Parallel Performance
To evaluate the parallel insert performance, we evaluate the

parallel scalability of our contestants. To that end we insert

100M 2D points into an initially empty set using a varying

number of threads. Figure 8 summarizes the obtained results

for all our contestants when gradually scaling the computa-

tion up to 4 × 8 cores, and thus beyond the boundaries of a

single socket.

As can be observed, TBB’s concurrent set implementation

experiences performance penalties for each additional socket

getting involved in the computation.

To the contrary, while Soufflé ’s optimistic B-tree does

suffer from crossing socket boundaries, it keeps benefiting

from additional parallel resources.

Figure 8 also illustrates the parallel scalability of bries

being filled with sets of various densities. For sufficiently

dense data sets, bries outperform B-trees. In those cases bries

reach a parallel efficiency of up to 80% for 32 cores. However,

when becoming too sparse, the high memory usage and

the associated memory management overhead and low data

locality results in a loss of efficiency.

Overall, in the ordered as well as in the unordered in-

sertion benchmarks, B-trees and bries achieve their best

performance with the full 32 cores. In the ordered insertion

benchmark, B-trees outperform TBB’s state-of-the-art con-

current set implementations by a factor of 22, while bries

outperform B-trees by an additional factor of 15, making

bries up to 350x faster than TBB’s concurrent set.

4.4 Processing Datalog Queries
As demonstrated by the previous experiments, given the

right circumstances, bries offer vastly superior performance

for (parallel) insertion and data query operations. Therefore,

in practice, the brie data structure performs well when the

workload consists of large volumes of high-density data. One

example of such a workload is a points-to analysis of the

OpenJDK dataset.

Figure 9 summarizes the performance of our brie data

structure compared to B-tree when running Soufflé on this

points-to analysis. We also include the performance when us-

ing an automaticmixed selection of data structures, whereby

brie is used for relations with 2 or less dimensions, and B-

trees in all other cases. The rationale for such a mechanism

is that lower dimension data is more likely to exhibit high

density, and therefore the brie is more suitable than the B-

tree.

We observe a runtime improvement of up to 4× by us-

ing brie instead of B-tree, and a memory usage reduction

of up to 2×. The result suggests that much of the data in

this workload is of high density. Indeed, for the largest re-

lation, VarPointsTo, we observed that B-tree used 11.9 bytes

per tuple, while brie used 2.2 bytes per tuple. Being a binary

7

Conference’17, July 2017, Washington, DC, USA Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07
 9e+07
 1e+08

1000² 2000² 5000² 10000²

in
se

rt
io

n
s

p
e
r

se
co

n
d

elements inserted

std::set
std::hash_set
google btree

sequential btree

optimistic btree
brie 0.1%

brie 1%
brie 100%

(a) sequential insertion (ordered)

 0
 5e+06
 1e+07

 1.5e+07
 2e+07

 2.5e+07
 3e+07

 3.5e+07
 4e+07

1000² 2000² 5000² 10000²

in
se

rt
io

n
s

p
e
r

se
co

n
d

elements inserted

std::set
std::hash_set
google btree

sequential btree

optimistic btree
brie 0.1%

brie 1%
brie 100%

(b) sequential insertion (random order)

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07
 9e+07
 1e+08

1000² 2000² 5000² 10000²

m
e
m

b
e
rs

h
ip

 q
u
e
ri

e
s

p
e
r

se
co

n
d

elements in set and number of queries

std::set
std::hash_set
google btree

sequential btree

optimistic btree
brie 0.1%

brie 1%
brie 100%

(c) membership test (random order)

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

1000² 2000² 5000² 10000²

e
n
tr

ie
s

p
e
r

se
co

n
d

elements in set

std::set
std::hash_set
google btree

sequential btree

optimistic btree
brie 0.1%

brie 1%
brie 100%

(d) full-range scan

Figure 7. Sequential performance of performance critical set operations.

 0.1

 1

 10

 100

1 8 16 24 32

in
se

rt
io

n
 t

im
e
 [

s]

number of threads

tbb::hash_set
optimistic btree

brie 0.1%

brie 1%
brie 100%

(a) ordered insertion

 1

 10

 100

1 8 16 24 32

in
se

rt
io

n
 t

im
e
 [

s]

number of threads

tbb::hash_set
optimistic btree

brie 0.1%

brie 1%
brie 100%

(b) random order insertion

Figure 8. Comparison of insertion times of 100M 2D points, using ideal density for each data structure.

relation, directly storing the data would use 8 bytes per tu-

ple, and therefore the brie exploits density to store tuples

3.6× more efficiently than even a direct encoding. We also

observe a slight performance improvement by using a mixed

data structure selection, suggesting that the workload also

contains a number of higher dimension relations, with low

data density. For these relations, brie performed worse than

B-tree, and thus optimal performance is obtained by using a

combination of the two.

5 Related Work
Data Structures for Datalog. Previous Datalog implemen-

tations have focused on various kinds of alternative data

structures including binary decision diagrams [36], Hashsets

e.g., [16, 31] and B-trees e.g., [8, 18]. In our experience, while

B-trees (as implemented in PA-Datalog / Logicblox ver. 3

and Soufflé) have shown to be the most scalable for large

ruleset/dataset benchmarks [18], certain use cases can be

enhanced by the use of specialized data structures such as

bries. Moreover, by exploiting the property of semi-naïve

8

Short Title Conference’17, July 2017, Washington, DC, USA

 0

 100

 200

 300

 400

 500

 600

 700

1 8 16 24 32

ru
n
ti

m
e
 [

s]

number of threads

btree brie mixed

(a) runtime

 0

 2

 4

 6

 8

 10

 12

 14

1 8 16 24 32

m
e
m

o
ry

 u
sa

g
e
 [

G
B

]

number of threads

btree brie mixed

(b) memory

Figure 9. Comparison of Soufflé running a points-to analysis of OpenJDK with brie and B-tree data structures, with auto
denoting automatic selection of data structures.

evaluation that data structures are never read from and writ-

ten to at the same time, we are able to further optimize the

design of the data structure, using ideas from [34].

Parallel Datalog Engines. There has been a multitude

of parallelization efforts of Datalog in the past, e.g., see [11,

30, 32, 37] mainly focusing on rewriting techniques and top-

down evaluations. Recently a number of state-of-the-art en-

gines have employed fine-grain parallelism to bottom-up

evaluation schemes. The work in [38] uses an in-memory

parallel evaluation of Datalog programs on shared-memory

multi-core machines. Datalog-MC hash-partitions tables and

executes the partitions on cores of a shared-memory multi-

core system using a variant of hash-join. To parallel evaluate

Datalog, Datalog rules are represented as and-or trees that

are compiled to Java. Logicblox version 4, uses persistent

functional data structures that avoid the need for synchro-

nization by virtue of their immutability, where insertions

efficiently replicate state via the persistent data structure. A

particular performance focused approach has been proposed

by Martınez-Angeles et al. who implemented a Datalog en-

gine running on GPUs [24]. Their basic data structure is an

array of tuples, allowing for duplicates. Thus, after every rela-

tional operation, explicit duplicate elimination is performed

– which for some cases vastly dominates execution time.

Also, the potentially high number of duplicates occurring

in temporary results quickly exceeded the memory budget

on GPUs. The applicability of this approach has only been

demonstrated for small Datalog queries. We point the reader

to [3, 29] for performance comparisons between engines on

large ruleset/dataset benchmarks.

Concurrent Tree Data Structures. B-trees themselves

are among the most successful data structures for indexed

data. Lots of research effort has been addressing locking tech-

niques [15]. However, most of these focus on the secondary

storage use case [21]. For in-memory usage, a modified B-

tree known as B-link tree managed to eliminate the need

for read locks [22]. Unfortunately, we have not been able to

obtain an implementation for comparison. An alternative

approach has obtained good results by utilizing hardware

transactional memory features available on some recent Intel

architectures for synchronizing B-tree insert operations [20].

Their evaluation shows comparable parallel scalability to

our optimistic approach. However, special hardware sup-

port is required for those and multi-socket systems have

not been evaluated. Concurrency has been investigated in

several tree-like data structures for general use. For example,

the data structure in [9] is similar in spirit to our work with

an optimistic concurrency which allows invisible readers.

The approach in [13] maintains interval information to de-

termine the placement of data. The data structure in [17] is

based on single-word reads, writes, and compare-and-swap

where its algorithm operations only contend if concurrent

updates affect the same nodes. Other concurrent tree-like

structures have been presented in [4, 5, 7, 10, 12, 23, 25–27].

6 Conclusion
In this paper, we argue for the need for various relational

data-structures in the evaluation of Datalog programs. We

introduced the brie data structure and have shown that for

high density use cases, parallel insertion performance can

exceed the performance of state-of-the-art B-tree implemen-

tations by a factor of 15. Integrated into a Datalog engine,

bries can out-perform best average case performing B-tree

data structures by a factor of 4, as demonstrated through an

industrial real-world use case.

References
[1] [n. d.]. B-Tree Containers from Google. https://isocpp.org/blog/2013/

02/b-tree-containers-from-google. Accessed: 2017-02-14.
[2] Serge Abiteboul, Richard Hull, and Victor Vianu (Eds.). 1995. Founda-

tions of Databases: The Logical Level (1st ed.). Addison-Wesley Longman

Publishing Co., Inc.

[3] Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis.

2017. Porting Doop to Souffle: A Tale of Inter-engine Portability for

Datalog-based Analyses. In SOAP. ACM, New York, NY, USA, 25–30.

9

https://isocpp.org/blog/2013/02/b-tree-containers-from-google
https://isocpp.org/blog/2013/02/b-tree-containers-from-google

Conference’17, July 2017, Washington, DC, USA Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz

[4] Maya Arbel and Hagit Attiya. 2014. Concurrent Updates with RCU:

Search Tree As an Example. In PODC. ACM, New York, NY, USA,

196–205.

[5] Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-

Gueta, Eshcar Hillel, Idit Keidar, and Moshe Sulamy. 2017. KiWi: A

Key-Value Map for Scalable Real-Time Analytics. SIGPLAN Not. 52, 8
(Jan. 2017), 357–369.

[6] Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ Con-

currencyMemoryModel. In Proceedings of the 29th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’08). ACM, New York, NY, USA, 68–78.

[7] Anastasia Braginsky and Erez Petrank. 2012. A Lock-free B+Tree. In

SPAA. ACM, New York, NY, USA, 58–67.

[8] Martin Bravenboer and Yannis Smaragdakis. 2009. Exception analysis

and points-to analysis: better together. In ISSTA. ACM, New York, NY,

USA, 1–12.

[9] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.

2010. A Practical Concurrent Binary Search Tree. SIGPLAN Not. 45, 5
(Jan. 2010), 257–268.

[10] Trevor Brown and Joanna Helga. 2011. Non-blocking K-ary Search

Trees. In OPODIS. Springer-Verlag, Berlin, Heidelberg, 207–221.
[11] S. Cohen and O. Wolfson. 1989. Why a Single Parallelization Strategy

is Not Enough in Knowledge Bases. In PODS. ACM, New York, NY,

USA, 200–216.

[12] Tyler Crain, Vincent Gramoli, and Michel Raynal. 2012. A Speculation-

friendly Binary Search Tree. In PPoPP. ACM, New York, NY, USA,

161–170.

[13] Dana Drachsler, Martin Vechev, and Eran Yahav. 2014. Practical Con-

current Binary Search Trees via Logical Ordering. SIGPLAN Not. 49, 8
(Feb. 2014), 343–356.

[14] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh

Govindan, Ratul Mahajan, and Todd Millstein. 2015. A General Ap-

proach to Network Configuration Analysis. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation
(NSDI’15). USENIX Association, Berkeley, CA, USA, 469–483.

[15] Goetz Graefe. 2010. A survey of B-tree locking techniques. ACM
Transactions on Database Systems (TODS) 35, 3 (2010), 16.

[16] Krystof Hoder, Nikolaj Bjørner, and Leonardo Mendonça de Moura.

2011. Z- An Efficient Engine for Fixed Points with Constraints. In CAV
(Lecture Notes in Computer Science), Vol. 6806. Springer, 457–462.

[17] Shane V. Howley and Jeremy Jones. 2012. A Non-blocking Internal

Binary Search Tree. In SPAA. ACM, New York, NY, USA, 161–171.

[18] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé:

On Synthesis of Program Analyzers. In International Conference on
Computer Aided Verification.

[19] Herbert Jordan, Pavle Subotic, David Zhao, and Bernhard Scholz. 2019.

A Specialized B-tree for Concurrent Datalog Evaluation (to appear). In

Proceedings of the ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP ’19). ACM, New York, NY, USA.

[20] Tomas Karnagel, Roman Dementiev, Ravi Rajwar, Konrad Lai, Thomas

Legler, Benjamin Schlegel, and Wolfgang Lehner. 2014. Improving

in-memory database index performancewith Intel® Transactional Syn-

chronization Extensions. In High Performance Computer Architecture
(HPCA), 2014 IEEE 20th International Symposium on. IEEE, 476–487.

[21] H. T. Kung and John T. Robinson. 1981. On Optimistic Methods for

Concurrency Control. ACM Trans. Database Syst. 6, 2 (June 1981),

213–226.

[22] Philip L. Lehman and s. Bing Yao. 1981. Efficient Locking for Concur-

rent Operations on B-trees. ACM Trans. Database Syst. 6, 4 (Dec. 1981),
650–670.

[23] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013.

The Bw-Tree: A B-tree for New Hardware Platforms. In ICDE. IEEE
Computer Society, Washington, DC, USA, 302–313.

[24] Carlos Alberto Martınez-Angeles, Inês Dutra, Vıtor Santos Costa, and

Jorge Buenabad-Chávez. 2014. A datalog engine for gpus. Declarative
Programming and Knowledge Management (2014), 152–168.

[25] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-free

Binary Search Trees. In PPoPP. ACM, New York, NY, USA, 317–328.

[26] Rotem Oshman and Nir Shavit. 2013. The SkipTrie: Low-depth Con-

current Search Without Rebalancing. In PODC. ACM, New York, NY,

USA, 23–32.

[27] Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Mar-

tin Odersky. 2012. Concurrent Tries with Efficient Non-blocking

Snapshots. SIGPLAN Not. 47, 8 (Feb. 2012), 151–160.
[28] James Reinders. 2007. Intel threading building blocks: outfitting C++ for

multi-core processor parallelism. " O’Reilly Media, Inc.".

[29] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann.

2016. On Fast Large-scale Program Analysis in Datalog. In CC. ACM,

New York, NY, USA, 196–206.

[30] Jürgen Seib and Georg Lausen. 1991. Parallelizing Datalog Programs

by Generalized Pivoting. In PODS. ACM, New York, NY, USA, 241–251.

[31] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. 2013. Dis-

tributed Socialite: A Datalog-based Language for Large-scale Graph

Analysis. Proc. VLDB Endow. 6, 14 (Sept. 2013), 1906–1917.
[32] Marianne Shaw, Paraschos Koutris, Bill Howe, and Dan Suciu. 2012.

Optimizing Large-scale Semi-Naïve Datalog Evaluation in Hadoop. In

Datalog 2.0. Springer-Verlag, Berlin, Heidelberg, 165–176.
[33] Alexander Shkapsky, Kai Zeng, and Carlo Zaniolo. 2013. GraphQueries

in a Next-generation Datalog System. Proc. VLDB Endow. 6, 12 (Aug.
2013), 1258–1261.

[34] Julian Shun and Guy E. Blelloch. 2014. Phase-concurrent Hash Tables

for Determinism. In Proceedings of the 26th ACM Symposium on Par-
allelism in Algorithms and Architectures (SPAA ’14). ACM, New York,

NY, USA, 96–107.

[35] Pavle Subotic, Herbert Jordan, Lijun Chang, Alan Fekete, and Bern-

hard Scholz. 2018. Automatic Index Selection for Large-Scale Datalog

Computation. PVLDB 12, 2 (2018), 141–153.

[36] J.Whaley, D. Avots, M. Carbin, andM. S. Lam. 2005. Using Datalogwith

binary decision diagrams for program analysis. In APLAS. 97–118.
[37] Ouri Wolfson and Avi Silberschatz. 1988. Distributed Processing of

Logic Programs. SIGMOD Rec. 17, 3 (June 1988), 329–336.
[38] Mohan Yang, Alexander Shkapsky, and Carlo Zaniolo. 2017. Scaling

up the performance of more powerful Datalog systems on multicore

machines. VLDB J. 26, 2 (2017), 229–248.

10

	Abstract
	1 Introduction
	2 Parallel Datalog Evaluation
	2.1 Datalog
	2.2 Parallel Semi-Naïve

	3 A Specialized Trie for Datalog
	3.1 Overview
	3.2 Operations
	3.3 Synchronization
	3.4 Properties

	4 Evaluation
	4.1 Memory Requirements
	4.2 Sequential Performance
	4.3 Parallel Performance
	4.4 Processing Datalog Queries

	5 Related Work
	6 Conclusion
	References

